The University of Jordan School of Engineering Chemical Engineering Department

Program: B.Sc. Academic Year: Semester:

CHE 0905584: Process optimization

Course Catalog (2019)

Structure and formulation of optimization problems in chemical engineering; Optimality criteria; Single and multivariable methods for unconstrained optimization; Linear programming; Optimality criteria for constrained optimization; Selected applications in chemical engineering.

Credit hours	3	Level	5	Pre-requisite(s)	0905302, 0915571
Instructor Prof. Menwer Attarakih		Office number CHE311		Office phone Ext. 22887	
Course website https://elearning.ju.edu.jo/login/index.php Live Streaming Platform: Microsoft Teams		E-mail m.attarakih@ju.edu.jo		Place Refer to Registration	on website

Textbooks:

- T. F. Edgar, D. M. Himmelblau & L. S. Lasdon, 2001. Optimization of Chemical Processes, 2nd Ed.. McGraw-Hill, New York.
- R. Turton, J. Shaeiwitz, D. Bhattacharyya, W. B. Whiting (2018). Analysis, synthesis and design of chemical processes, 5th Ed., Prentice Hall, PTR, New Jersey.
- Instructor Handouts.

References:

- Ravindran, A., Ragsdell, K. M., Reklaitis, G. V., 2006. Engineering Optimization Methods and Applications, 2nd Ed., John Wiley & Sons, Inc., New Jersey.
- Taha, H. A., 2011, Operations Research: An Introduction, 9th Ed., Pearson, New York.
- Yang, W. Y., Cao, W., Chung, T.-S. & Morris, J., 2005. Applied Numerical Methods using MATLAB. John Wiley & Sons, Inc., New Jersey.

Learning Objectives and Intended Learning Outcomes

Ob	ojectives	Outcomes
1.	Introducing students to the structure and	1.2 Developing models for optimization (O1)
	basic concepts of process optimization	1.3 Understanding the general outlines for solving optimization
	(01)	problems (O1)
		1.4 Preliminary application of optimization theory to single equipment
		& flowsheet models (O1)
2	Introducing the the basic optimization	1.1 Understanding the basic concepts of optimization (O1)
	theory (O1)	1.2 Understanding the continuity of functions & its application to
		optimization (O1)
		1.3 Be able to write Nonlinear Programing Problem (NLP) in the
		standard formulation (O1)
		1.4 Understanding the importance of Convexity in optimization (O1)
		1.5 Understanding quadratic approximation of objective functions
		(01)
		1.6 Be able to apply the necessary & sufficient conditions for the
		Extremum of unconstrained objective function (O1)

- Learning Objectives and Intended Learning Outcomes (Continued)

Objectives	Outcomes
3. Introducing the optimization Theory:	3.1 Understanding numerical methods for one dimensional objective
Unconstrained one dimensional	function optimization (O1)
objective functions (O1)	3.2 Understanding and applying the Bracketing methods: The Golden
	search method (O1)
	3.3 Be able to apply Newton Methods in optimization (O1)
	3.4 Understanding & using Polynomial approximation methods (O1)
	3.5 Be able to know how to extend to higher dimensional problems (O1)
	3.6 Be able to apply the MATLAB optimization toolbox (O1)
4. Apply the optimization Theory: Linear	4.1 Know the applications of LP
Programming (LP) (O1)	4.2 Understand the geometrical interpretation & graphical solution (O1)
	4.3 Understand the basic linear programming definitions (O1)
	4.4 Be able to understand and apply the Simplex method for solving LP
	(01)
	4.5 Be able to solve applied linear optimization problems from
	Chemical Engineering using MATLAB optimization toolbox (O1)
5. Introducing the optimization theory:	5.1 Understand and apply the direct substitution method (O1)
Nonlinear Programming (NLP) with	5.2 Understand and apply the first-order necessary conditions for a local
constraints (O1)	Extremum (O1)
	5.3 Understand and apply Quadratic Programming (O1)
	5.4 Understand and apply the Augmented Lagrangian method (O1)
	5.5 Understand and apply The Generalized Reduced Gradient Method
	5.6 Be able to solve applied NL optimization problems from Chemical
	Engineering using MATLAB optimization toolbox (O1)
6. Enhance the ability of students for	9.1 Enhance students' skills through intensive use of available data
life-long learning and communication	resources and short projects with written and oral presentations (O7)
skills (O7)	

Topics Covered

Week	Topics	Reference
1-2	Introduction to structure and process optimization	Handouts, Textbook (1), Chap.
		1, 2, 3
3-5	Introduction to the the basic optimization theory	Handouts, Chap. 4
6-8	Optimization Theory: Unconstrained one dimensional objective	Handouts, Chap. 5
	functions	
9-10	Optimization Theory: Unconstrained multidimensional objective	Handouts, Chap. 6
	functions	
11-12	Optimization Theory: Linear Programming (LP)	Handouts, Chap. 7
13-16	Programming (NLP) with constraints	Handouts, chap. 8

Evaluation

Evaluation Tool	Weight	Date
Midterm Exam	30	Will be announced by the department
Project	15	Will be arranged between the 5 th and 16 th weeks
Presentations	5	To be arranged one week after the assignment
Homework	5	Will be submitted one week after the assignment
Final Exam	50	Will be announced by the University

Relationship to Program Outcomes

01	O2	03	04	05	06	O7		
Х						Х		

Relationship to CHE Program Objectives

PEO1	PEO2	PEO3	PEO4	PEO5	PEO6	PEO7	PEO8	PEO9	PEO10	PEO11

Document Control

Prepared by	Prof. Menwer Attarakih
Last Modified	20.02.2019
Current Version	20022019